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Haynes 230 

Introduction 

Haynes alloy 230 fnds extensive application in aerospace, cnemical processing and industrial 
heating industries This material has excellent high temperature properties and good corrosion resistance 
The understanding of mechanical an^ microstructural behavior during high temperature deformation is 
very important for deformation processing of these alloys. In this investigation, flow behavior of Haynes 
allov 230 was determined by conducting compression tests at various temperatures and strain rates 
Constitutive relations were determined from the How behavior, and a dynamic material modeling for this 
alloy was performed Thus, the optimum processing condition in termc of temperature and strain rate 
was determined Microstructural changes during high temperature deformation were also characterized 
to aid process design engineers to select processing conditions in terms of resulting microstructure 

Experimental Procedure 

The material used in this investigation was commercially available Haynes 230 solution treated 
bars The typical microstructure of the as-received materials had an equiaxed grain with an average size 
of 52 |im (ASTM 5.2), Figure 1. There are some large precipitates, possibly of M5C type carbides, 
which remained in the microstructures even after high temperature deformation The chemical 
composition of this alloy is as follows: 

Element Ni       Cr       W       Fe       Mo     Co      Mn      Si        Al       C 

Wt. % Bal      217     13.98   1.-.1     1.2      0.64     0.18     0.37     0.31     0.11 

Cylindrical compression test specimens with a diameter of 12.7 mm and a height of 15.9 mm were 
machined from the bars. Isothermal compression testing was conducted on MTS testing machine under 
an inert environment  The test matrix was as follows: 

Temperature. C (F):   950(1742), 1000(1832), 1050(1922), 1100(2012), 1150(2102), 1175(2147), 
and 1200 (2192) 

Strain rate, r1: 0.001, 0.01. 0.05, 0.1, 0.5. 1. 5 and 20 

The tests were conducted in vacuum. Load and stroke data from the tests were acquired by a 
computer and later converted to true stress-true strain curves Immediately after the compression test, 
the spec'mc.s were quenched with forced helium gas in order to retain the deformed microstructure. 
Longitudinal and transverse sections of the specimens were examined using optical microscope. The 
photomicrographs presented were talcn from the center of the longitudinal section of the specimens 

Results 

Table 1 is a list of the figures, test conditions and the observed microstructures The true stress- 
true strain flow curves are shown in Figure 2 to Figure 57 with the corresponding deformed 
microstructures m »umc vn tmsse Ttgunto iu iiiidinUi '1 inicostructural changes under the processing 
conditions. True stress versus strain rate was plotted in log-log scale in Figure 58 at a true strain of 0.3. 
The slope of the plot gives the strain rate sensitivity m. which is not constant over the range of slrain rate 
tested. Log stress vs. 1/T at the same true strain is shown :n Figure 59. A processing map at '.his strain 
was developed for the Haynes alloy 230 and is shown in Figure 60. The optimum processing condition 
from the map can be obtained by selecting the temperature and strain rate combination which provides 
the maximum efficiency in the stable region. This condition is approximately 1100 C and 0.001 s"' for 
this material. The precipitates in the as-received material remain after test at all test conditions 



Table 1  List of figures, testing conditions and microstructural observations for Haynes 230 

Fig. 
1 No- 
'' 1 

Temperature 
C(F) 

Strain 
Rate 
si 

Microstructure 
Optical Microscopy 

Page 
No 

As received, heat treated and aged wrought bars 
Equiaxed grains of 52 pm (ASTM 5.2)   Some twins 
observed   Precipitates present and remain for all the 
test conditions below 

4 

2 950(1742) 0 001 Twinned elongated grains (aspect ratio -3 1) showing 
some necklacing 

5 

3 950(1742) 0.01 6 
4 950(1742) 0.05 Elongated grain: ;hi>»l.:s xrre ricddachg 7 
5 930(1742) 0 10 Elongated grains (aspect ratio -3.5) with starting 

necklacing at the grain boundaries 

g 

6 950(17.»2) 0.50 9 
7 950(1742) 1.0 Elongated grains, extensive necklacing and about 

25% of recrystallized equiaxed grains (~4|im) 

10 

8 950(1742; 5.0 11 
9 950(1742) 200 Elongated grains (aspect ratio -2 1) with some twins 

and possibly slip lines 

12 

i0 1000(1 ??2) 0001 Elongated grains showing twins and, -3% necklacing 
is also present. 

13 

11 1000(1832) 0,01 Elongated  grains   and  extensive  necklacing  with 
-10% of recrystallized equiaxed grains (3.4 \im). 
Some twins and possibly slip bands are present 

14 

12 1000(1832) 005 i5     : 
13 1000(1832) 0.10 same as above (11). 16        i 
14 1000(1832) 0.50 17       i. 
15 1000(1832) 1.0 Elongated grains with some twins and, very fine 

necklacing at grain boundaries   There is also some 
subgranular structure within deformed grains. 

18 

16 1000(1832) 5.0 19 
17 1000(1832) 20.0 Elongated grains with seme twins and possibly slip 

bands. 

20       \ 

18 1050(1922) 0001 Elongated grains with some twins aH, very fine 
necklacing. There is also some subgranular structure 
within deformed grains. 

2! 

19 1050(1922) 0.01 22       | 
20 1050(1922) 005 Elongated    grains    with    extensive    necklacing, 

recrystallized grains,   seme twins , slip lines, and, 
there  is also  sotne  subgran"'««-  «tructure  within 
deformed grains. 

23 

21 1050(1922) 0.1 Same as above. 24 
22 1050(192/) 0.5 25 



'J.i 1050(1922) i Elongated     grains     with     extensive     necklacing, 
recrystallized grains,    some twins . sup lines, and, 
there  is   also   some  subgranuiar   structure   (-60% 
equiaxed grains of 7 pm) within deformed grains 

26 

24 1050(1922) 5 27 
25 1050(1922) 20 Elongated grains (aspect ratio -3 1 )with   necklacing 

and a sub granular :tructure 

28 

26 1100(2012) 0001 Eauiaxed  dynamically rscrystallized  grains (-40% 
with a average size of 12 ^m) and some elongated 
deformed grains   Fine grain boi.'idary precipitation 

79 

27 1100(2012) 0.01 Elongated and -45% equiaxe 1 recrystallized grains 
of 8.5 um   There are deforrna'ion twins and possibly 
slip bands   Fine grain boundar precipitation 

30 

Z8 IKX'^UiI) 0 05 31 
29 1100(2012) Ü.1 Extensively deformed grains with  necklacing and 

subgranuiar structure -45% (equiaxed grains with an 
average   size of 8 pm)    Fine precipitation at grain 
boundaries is also present 

32 

30 1100(2012) 0.5 33 
31 1100(2012) 1 Elongated grains with a subgranuiar structure and 

fine precipitation at grain boundaries 

34 

32 1100(2012) 5 35 
33 1100(2012) 20 Elongated grains with a subgranuiar structure -90% 

(equiaxed grains with an average   size of 11 pm) 
Fine precipitation at grain boundaries is alsojircsent. 

36 

34 1150(2102) 0001 Large   recrystallized   equiaxed   grains   with   some 
twinning 

37 

35 1150(2102) 0.01 38 
36 1150(2102) 0.05 Recrystallized equiaxed grains 39 
37 1150(2102) 0.1 40 
38 1150(2102) 0.5 41 
39 1150(2102) 1 Small recrystallized grains (duplex size) with some 

twinning 

42 

40 1150(2102) 5 43 
41 1150(2102) 20 Small recrystallized grains (duplex size) with some 

twinning. 

44 

42 1179(2147) 0.001 Recrystallized equiaxed grains (duplex size) 45 
43 1175(2147) 0.01 Recrystallized equiaxed grains (duplex size) 46 
44 1175(2147) 0.05 47 
45 1175(2147) 0 1 Recrystallized equiaxed grains, and few grown grains 48 
46 1175(2147) 0.5 49 
47 1175(2147) 1 Equiaxed recrystallized grains with some twins. 50 
48 1175(2147) 3 51 
49 11 .v(2i4^ 23 3ni<ul fecryst&l&xd crirned ^.joc 52 

5J 50 1200(2192) 0 001 Large recrystallized equiaxed g.ains (-47 pm), there 
are no twins present and the large precipitates are 
finer than at lower temperatures. 

51 i200{2192) 001 54 



52 1200(2192) 0.05 Large recrystallized equiaxed ecrystaltiz :~d grains, 55-

there are no twins present and the large precipitates 
are finer than at lower temeeratures. 

53 1200(2192) 0.1 Recrystallized equiaxed grains (- 17.1 f.liD), there are 56 

some twins present and the large precipitates are liner 
than at lower te:7l_Q_eratures. -54 L200(2!92} I 0.5 57 

55 1200(2192) .-- Recrystallized equiaxed grains. 58 
56 1200(2192) I 5 59 I 
57 i 1200(2192) 20 Recrystalliz~ ~uia.xed_grains. 60 

Figure 1. As-received microstructure ofHaynes 230. 
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Figure 32. True stress-true strain curve, 1100 C and 5.0 s"V 
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Figure 33.  True stress-true strain curve and an optical micrograph from the center of the compressed 
sample cut through the compression axis, 1100 C and 20 s"1. 
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Figure 34.  True stress-true strain curve and an optic?) micrograph from the center of the compressed 
sample cut through the compression axis, 11 SO C and 0.001 s"'. 
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Figure 35. True stress-true strain curve, 1150 C and 0.01 s"1. 
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Figure 36. True stress-true strain curve and an optical micrograph from the center of the compressed 
sample cut through the compression axis, 11 SO C and 0.05 s'V 
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Figure 40. True stress-true strain curve, 1 ISO C and 5 s~l. 
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Figure 41.  True stress-true strain curve and an optical micrograph from the center of the compressed 
sample cut through the compression axis, 1150 C and 20.0 s'1. 
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Figure 42. True stress-true strain curve and an optical micrograph from the center of the compressed 
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Figure 43.  True stress-true strain curve and an optical micrograph from the center of the compressed 
sample cut through the compression axis, 1175 C and 0 01 r'. 
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Figure 44. True stress-true strain curve, 1175 C and 0 05 s'1 

47 



o 
Q. 

CO 

«  

Havnes 230 1175c 0.1 s-1 

200 r—■^—1 'i      '      1     '     i—-< 1 1 1 1— r 

150 

100 

50 

co.o 0.1 0.2 0.3 0.4 

True Strain 

0.5 0.6 

V^ 

lp 

4 J' 2^*' 4J?^EE' V^ 

BÜ^ ..i5^- -v-c* "•-*-«► -^41 

JWlM JBjfcj^iPi^iiwMfc «M 

0 
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Figure 46. True stress-true strain curve, 1175 C and 0.5 s"'. 
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Figure 48. True stress-true strain curve, 1175 C and 5 s"'. 
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Figure 49.  True stress-true strain curve and an optical micrograph from the center of the compressed 
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Figure 51. True stress-true strain curve, 1200 C and 0.01 s"1. 
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Figure 52.  True stress-true strain curve and an optical micrograph from the center of the compressed 
sample cut through the compression axis, 1200 C and 0,05 r*. 
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Figure 54. True stress-true strain curve, 1200 C and 0.5 s-1. 
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Figure 55. True stress-true strain curve, 1200 C and 1 s"V 
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Figure 56. True stress-true sirain curve, 1200 C and 5 s" V 
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Figure 57.   Tme stress-true strain curve and an optical micrograph from the center of tne compressed 
sample cut through the compression axis, 1200 C and 20 s" V 
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Summary 

Compression tests have been performed on Haynes alloy 230 over a wide range of temperatures 
and strain rates The experimental conditions used in this work are representative of those used in 
mtialforming practices. From the stress-strain curves, the flow behavior was characterized and a 
processing map indicating the optimum processing condition was generated This conditioii is 
approximately 1100 C and 0.001 s-'. 

The deformed microstructures were characterized from the quenched specimens by optical 
microscopy and are presented with corresponding stress-strain curves 

Implementation of Data Provided by the Atlas of Formability 

The Atlas of Formability program provides ample data on flow behavior of various important 
engineering materials in the temperature »nd strain rate regime commonly used in metalvorking 
processes. The data are valuable in design and problem solving in metalworking processes of advanced 
materials. Microstructural changes with temperature and strain rates are also provided in the Bulletin, 
which helps the design engineet to select processing parameters leading to the desired microstructure. 

The data can also be used to construct processing map using dynamic material modeling approach 
to determine stable and unstable regions in terms of ternperatm e and strain rate The temperature and 
strain rate combination at the highest efficiency in the stable region provides the optimum processing 
condition This has been demonstrated in this Bulletin. In some metalworking processes such as forging, 
strain rate varies within the workpiece An analysis of the process with finite elument method (FEM) can 
ensure that the straii. rates at the processing temperature in the whole workpiece fall into the stable 
regions in the processing map. Furthennore, FEM analysis with the data from the Atlas of Formability 
can be coupled with fracture criteria to predict defect formation in metalworking processes. 

Using the data provided by the Atlas of Formability, design of metalworking processes, dynamic 
material modeling, FEM analysis of metalworking processes, and defect prediction are common practice 
in Concurrent Technologies Corporation. Needs in solving problems related to metalworking processes 
can be directed to Dr Prabir K. Chaudhury, Manager of Forming Department, by calling (814) 269-2594. 
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